Modern nanochemistry has developed efficient techniques to manipulate nanoscale objects with a highly advanced degree of control. Chemically engineered nanoparticles can be synthesized with a large choice of sizes, shapes, constituent materials and surface coatings, and further assembled spatially into self-assembled structures, either spontaneously or in a directed manner. Advances in particle self-assembly and the quasi unlimited range of nanostructures with controlled architectures and functions available suggest that such assemblies may also provide a simple route to meta materials at infrared and visible length scales. Indeed, nanochemistry and self-assembly strategies are able to inexpensively produce materials whose inner structure is natively in the right range of sizes for optical and infrared applications and can provide fully three dimensional structures, thus opening the way to the fabrication of 3Dmeta material samples of finite volume of the highest importance to many applications. Such meta materials may be used, for example, to create 3D homogeneous, isotropic negative index materials , with simultaneously negative permittivity and magnetic permeability, cloaking devices or light-based circuits manipulating local optical electric fields rather than the flow of electrons. In this work we investigate certain EM properties of meta materials formed by densely arrayed clusters of plasmonic nanoparticles, big round plant pot which will be referred to as nanoclusters. Nanoclusters are formed by a number of metal nanocolloids attached to a dielectric core, as in the examples shown in Fig. 1, and can be easily realized and assembled by current state-of-the-art nanochemistry techniques.
Such a kind of structure generalizes the concept of nanorings originally proposed in [2] to realize a magnetic media at visible frequencies and has been recently shown in [3] to have the potential of providing resonant isotropic optical magnetism. An approximate model based on the single dipole approach in conjunction with the multipole expansion of the scattered field is used here to evaluate the electric and magnetic polarizabilities of the nanocluster. Then, the permittivity and permeability of the composite medium are estimated by the Maxwell Garnett homogenization model. Results obtained by this approximate method will be compared with data from full-wave simulations, focusing on the characterization of the nanocluster resonant isotropic electric and magnetic responses to anincident wave field, and the possibility to realize an isotropic NIM at optical frequencies.Extreme droughts are increasing in frequency, severity, and duration in arid and semiarid regions around the world due to climate change. As a result, plant species that are typically capable of withstanding regular drought stress are exposed to conditions outside of their normal range, rendering them susceptible to opportunistic disease-causing agents. Theoretical frameworks describing the roles of environmental and biotic stressors in driving plant mortality are well established. However, there is a lack of empirical data with which to resolve how these factors interact in vivo. Furthermore, studies that document progression of stress and die back throughout the course of a multi-year drought event in situ are rare. In this dissertation, I detail a series of studies aimed at understanding mechanisms of dieback and mortality by focusing on a severe canopy dieback event in a classically drought tolerant chaparral shrub, big berry manzanita in Santa Barbara, California, during an historic California drought.
I provide strong evidence that dieback is caused by members of the fungal Botryosphaeriaceae family in conjunction with extreme drought, and that dieback is also related to increased drought stress along an elevational gradient. By conducting a field survey, I identify Neofusiccocum australe as the most prevalent and widely distributed fungal pathogen in A. glauca., and that dieback is strongly correlated with Bot. infection. Using a full-factorial design in a greenhouse experiment, I provide evidence that extreme drought and infection by N. australe can indeed act synergistically, together driving faster and greater mortality in young A. glauca than either factor alone. Lastly, by taking measurements on water availability, dark-adapted leaf fluorescence, and photosynthesis in A. glauca shrubs across an elevational gradient, I provide evidence that landscape-level factors can contribute to localized variability in water stress and canopy dieback severity in A. glauca, and may be useful in predicting vulnerabilities during future drought. Remarkably, no new mortality was observed throughout the study, suggesting extreme resiliency in adult shrubs. However, canopy dieback alone can impact wildlife and fuel loads, even when not associated with mortality. Together, these results provide strong evidence that A. glauca dieback was caused synergistic effects between extreme drought and infection by N. australe, and that lower elevations and exposed slopes may be at greatest risk for future events. According to the most conservative estimates, global mean annual temperatures are now outside the historic range of the last 1,300 years . Simultaneously, mean annual precipitation has declined in many parts of the Northern Hemisphere, resulting in increased drought events . Extreme climatic shifts are predicted to affect, both directly and indirectly, biogeochemical cycling, energy fluxes, wildlife habitat, and ecosystem goods and services on a global scale . An important component in preparing for the effects of these events is to understand how communities will change in response to them, making this a critical topic for ecological research . For species to survive in dry climates, they must have evolved drought tolerance mechanisms .
However, extreme climate events can expose species that are typically capable of withstanding regular drought stress to conditions outside of their normal range. Furthermore, physiological responses to extreme drought can also have a negative feedback on plants’ defensive abilities, rendering them susceptible to biotic attack including by insects or disease agents . Consequently, synergies between extreme climatic events and biotic attack will likely lead to more dramatic changes than would otherwise occur in historically “drought tolerant” plant communities . Future climate change is expected to exacerbate these interactions worldwide. . Widespread tree mortality from drought has been documented in forested systems around the world , and biotic attack has been associated with many of these events . However, much less focus has been given historically to understanding the consequences of extreme drought on shrubland communities like chaparral , particularly in conjunction with biotic influences. Therefore, as we face predictions of hotter, longer, and more frequent drought , it is becoming increasingly critical to hone in on the mechanisms, tipping points, and ecosystem impacts of these events. Furthermore, identifying plant mortality thresholds is of upmost importance for predicting susceptibility to extreme drought events of the future . California recently experienced a record-breaking, multi-year drought from 2012- 2018, estimated to be the most severe event in the last 1,000 years , with the 2013-2014 winter season being one of the driest on record . Drought tolerance has long been considered a common trait of shrub species in California chaparral communities where hot, rainless summers are the norm . However, round plant pot in the Santa Ynez mountain range in Santa Barbara County, the dominant and widespread big berry manzanita exhibited dramatic dieback related to multi multi-year drought along with infection by opportunistic fungal pathogens in the Botryosphaeriaceae . These observations indicate that this species may be reaching a threshold in its drought resistance capabilities. Studies have reported Arctostaphylos spp. to exhibit unusual scales of dieback during periods of extreme drought stress, , however this could be the most severe dieback event in recent history, both in terms of scale and severity. Manzanita are important members of the chaparral ecosystem, providing habitat for wildlife and food through their nectar and berries . Additionally, their structure makes them important components of historical chaparral fire regimes, and their fire-induced germination strategies contribute to post-fire successional trajectories . Large-scale mortality of this species could reduce resource availability for wildlife, as well as alter fuel composition and structure in the region, resulting in an increased risk of more intense, faster burning fires. Therefore, the potential continued dieback of A. glauca is of great concern for both ecosystem functions and human populations alike. Significant dieback of A. glauca in Santa Barbara county, California, was first observed in winter, 2014 . Preliminary observations revealed patterns of dieback occurring along an elevational gradient, with effects being most pronounced at lower elevations than at higher elevations. It was also observed that dieback was most prevalent in stands located on steep, exposed southerly-facing slopes. These observations are consistent with findings by previous studies , Since A. glauca is classically drought-tolerant and able to function at very low water potentials , it raises the question of what is driving this extreme dieback event?
Could A. glauca be reaching a tipping point as a result of extreme drought stress, presence of a fungal pathogen, or both?My dissertation research focuses broadly on the influence of drought and fungal pathogens on this classic, drought tolerant chaparral shrub species. Through a combination of methods, I explore the individual and interacting roles of water stress and opportunistic fungal pathogens in A. glauca in a major dieback event, and track the fate of individual shrubs through the progression of an historic drought. My findings are organized into three chapters based on the following questions: What are the identities and distribution of fungal pathogens associated with A. glauca dieback ; How do drought stress and fungal infection interact to promote dieback and mortality in A. glauca ; and How does A. glauca dieback progress over time during drought, and how do landscape variables and drought stress correlate with dieback ? In Chapter 2, I identify fungal pathogens in A. glauca, and discuss their distribution across the landscape in the Santa Barbara county front country region. Based on preliminary findings showing significant levels of N. australe in the field, I expected to find high incidence of this opportunistic pathogen in A. glauca across the landscape, suggesting their role in drought-related dieback. The data support this prediction, as over half of the pathogens isolated were members of the Bot. family, and the majority of these were identified as N. australe, a novel pathogen in the region. Furthermore, Bot. infection was highly correlated with dieback severity, which was greatest at lower elevations. Taken together, the results show that opportunistic Bot. pathogens, particularly N. australe, are highly associated with A. glauca dieback across the landscape, and that lower elevations may be particularly vulnerable. In Chapter 3, I address the hypothesis that extreme drought and N. australe function synergistically to promote faster and greater mortality than either factor alone. I designed a full-factorial greenhouse experiment to identify whether A. glauca dieback is driven by extreme drought, infection by the fungal pathogens, or both. The results of this experiment support my hypothesis. Young A. glauca inoculated with N. australe while simultaneously exposed to extreme water stress exhibited faster stress symptom onset, faster mortality, and overall higher morality than those subjected to either factor alone. These results provide strong evidence that the severe A. glauca dieback event observed during the 2012-2018 drought was the result of synergistic interactions between extreme drought and opportunistic pathogens, rather than the nature of the drought or particularly virulent pathogens. In Chapter 4, I explore factors that are associated with climatic stress in order to draw correlations between A. glauca stress and dieback severity. Identifying such relationships can be useful in making predictions on dieback and mortality across the landscape. By analyzing data on predawn xylem pressure potentials and net photosynthesis in shrubs along an elevational gradient, I found that patterns of water availability and physiological function both varied greatly across the landscape, and only weakly correlate with dieback severity, suggesting factors other than elevation and aspect must also be important in driving plant stress and dieback. Extreme heterogeneity across this landscape likely confounded my results, yet may also play an important role in supporting the resiliency of A. glauca populations as a whole. By measuring the progression of dieback in these same shrubs over time, I found that dieback severity throughout the drought increased most at lower elevations compared to high, providing evidence that shrubs at lower elevations may be particularly vulnerable. Unexpectedly, no new mortality was observed in surveyed shrubs as the drought progressed, even though many plants exhibited severe levels of dieback throughout the study. This result shows that high levels of dieback severity do not necessarily predict morality in A. glauca. In summary, my dissertation provides strong evidence that A. glauca dieback during the recent California drought was caused by synergistic interactions between extreme drought stress and infection by widely distributed opportunistic fungal pathogen N. australe.