The belief of using fruits as traditional medicine exist in many cultures worldwide

Larger roots were left in the oven for 4 days. Stumps were considered part of the root system for this analysis.In vineyard ecosystems, annual C is represented by fruit, leaves and canes, and is either removed from the system and/or incorporated into the soil C pools, which was not considered further. Structures whose tissues remain in the plant were considered perennial C. Woody biomass volumes were measured and used for perennial C estimates. Cordon and trunk diameters were measured using a digital caliper at four locations per piece and averaged, and lengths were measured with a calibrated tape. Sixty vines were used for the analysis; twelve vines were omitted due to missing values in one or more vine fractions. All statistical estimates were conducted in R.The present study provides results for an assessment of vineyard biomass that is comparable with data from previous studies, as well as estimates of below ground biomass that are more precise than previous reports. While most studies on C sequestration in vineyards have focused on soil C, some have quantified above ground biomass and C stocks. For example, a study of grapevines in California found net primary productivity values between 5.5 and 11 Mg C ha−1—figures that are comparable to our mean estimate of 12.4 Mg C ha−1 .

For pruned biomass, hydroponic nft channel our estimate of 1.1 Mg C ha−1 were comparable to two assessments that estimated 2.5 Mg of pruned biomass ha−1 for both almonds and vineyards. Researchers reported that mature orchard crops in California allocated, on average, one third of their NPP to harvestable biomass, and mature vines allocated 35–50% of that year’s production to grape clusters. Our estimate of 50% of annual biomass C allocated to harvested clusters represent the fraction of the structures grown during the season . Furthermore, if woody annual increments were considered this proportion would be even lower. Likewise the observed 1.7 Mg ha−1 in fruit represents ~14% of total biomass , which is within 10% of other studies in the region at similar vine densities. More importantly, this study reports the fraction of C that could be recovered from winemaking and returned to the soil for potential long term storage. However, this study is restricted to the agronomic and environmental conditions of the site, and the methodology would require validation and potential adjustment in other locations and conditions. Few studies have conducted a thorough evaluation of below ground vine biomass in vineyards, although Elder field did estimate that fine roots contributed 20–30% of total NPP and that C was responsible for 45% of that dry matter. More recently, Brunori et al. studied the capability of grapevines to efficiently store C throughout the growing season and found that root systems contributed to between 9 and 26% of the total vine C fixation in a model Vitis vinifera sativa L. cv Merlot/berlandieri rupestris vineyard.

The results of our study provide a utilitarian analysis of C storage in mature wine grape vines, including above and below ground fractions and annual vs. perennial allocations. Such information constitutes the basic unit of measurement from which one can then estimate the contribution of wine grapes to C budgets at multiple scales— fruit, plant or vineyard level—and by region, sector, or in mixed crop analyses. Our study builds on earlier research that focused on the basic physiology, development and allocation of biomassin vines. Previous research has also examined vineyard-level carbon at the landscape level with coarser estimates of the absolute C storage capacity of vines of different ages, as well as the relative contribution of vines and woody biomass in natural vegetation in mixed vineyard-wildland landscapes. The combination of findings from those studies, together with the more precise and complete carbon-by-vine structure assessment provided here, mean that managers now have access to methods and analytical tools that allow precise and detailed C estimates from the individual vine to whole-farm scales. As carbon accounting in vineyard landscapes becomes more sophisticated, widespread and economically relevant, such vineyard-level analyses will become increasingly important for informing management decisions. The greater vine-level measuring precision that this study affords should also translate into improved scaled-up C assessments . In California alone, for example, there are more than 230,000 ha are planted in vines. Given that for many, if not most of those hectares, the exact number of individual vines is known, it is easy to see how improvements in vine-level measuring accuracy can have benefits from the individual farmer to the entire sector.

Previous efforts to develop rough allometric woody biomass equations for vines notwithstanding, there is still a need to improve our precision in estimating of how biomass changes with different parameters. Because the present analysis was conducted for 15 year old Cabernet vines, there is now a need for calibrating how vine C varies with age, varietal and training system. There is also uncertainty around the influence of grafting onto rootstock on C accumulation in vines. As mentioned in the methods, the vines in this study were not grafted—an artifact of the root-limiting duripan approximately 50 cm below the soil surface. The site’s location on the flat, valley bottom of a river floodplain also means that its topography, while typical of other vineyard sites per se, created conditions that limit soil depth, drainage and decomposition. As such, the physical conditions examined here may differ significantly from more hilly regions in California, such as Sonoma and Mendocino counties. Similarly, the lack of a surrounding natural vegetation buffer at this site compared to other vineyards may mean that the ecological conditions of the soil communities may or may not have been broadly typical of those found in other vineyard sites. Thus, to the extent that future studies can document the degree to which such parameters influence C accumulation in vines or across sites, they will improve the accuracy and utility of C estimation methods and enable viticulturists to be among the first sectors in agriculture for which accurate C accounting is an industry wide possibility. The current study was also designed to complement a growing body of research focusing on soil-vine interactions. Woody carbon reserves and sugar accumulation play a supportive role in grape quality, the main determinant of crop value in wine grapes. The extent to which biomass production, especially in below ground reservoirs, relates to soil carbon is of immediate interest for those focused on nutrient cycling, plant health and fruit production, as well as for those concerned with C storage. The soil-vine interface may also be the area where management techniques can have the highest impact on C stocks and harvest potential. We expect the below ground estimates of root biomass and C provided here will be helpful in this regard and for developing a more thorough understanding of below ground C stores at the landscape level. For example, Williams et al. estimated this component to be the largest reservoir of C in the vineyard landscape they examined, but they did not include root biomass in their calculations. Others have assumed root systems to be ~30% of vine biomass based on the reported biomass values for roots, trunk, and cordons. With the contribution of this study, the magnitude of the below ground reservoir can now be updated.In plants, a fruit is the seed-containing section, which is formed from the ovary after flowering. Fruits have their vivid colors due to the presence of phytochemicals as pigments, which are natural compounds that protect against threats and insults such as insects and ultraviolet sunlight. Bright colors of fruits also attract animals and human beings for seed dispersing purposes. For instance, cocoa beans and blueberries have been used traditionally as therapies among indigenous people in North America. The fruit, leaves, seed, nft growing system and bark of the mango plant have been used as traditional medicine in Southeast Asia, Oceania, Africa, and Central America. Goji berries have been used as traditional Chinese medicine for two thousand years. Phytochemicals can be classified primarily as terpenoids, phenolics, alkaloids, nitrogen containing plant constituents, and organosulfur compounds. Examples of major phytochemical groups that are abundant from dietary sources and related to human health include carotenoids and polyphenols. Carotenoids are a type of terpenoid. Carotenoids can be classified as carotenes and xanthophylls. Phenolics can be classified as phenolic acids and polyphenols. Two primary subclasses of phenolic acids are hydroxybenzoic acid and hydroxycinnamic acid. Polyphenols include flavonoids, tannins, stilbenes, lignans, and xanthones. As one of the most studied categories of polyphenols, subclasses of flavonoids can be categorized to flavanones, flavones, anthocyanins, flavanols , chalcones, flavonols, and isoflavonoids.6Among the thousands of phytochemicals that have been identified in plants, both health promoting and toxic compounds exist.

For instance, some tannins decreased the activity of digestive enzymes or the bio-availability of protein or minerals and have been considered as antinutrients. Phytochemicals that exist in plant-based dietary sources and have value in human health maintenance and prevention of diseases are defined as phytonutrients. Fruits, vegetables, legumes, spices, nuts, wine, cocoa, tea, and olive oil are examples of foods rich in bioactive phytonutrients. The consumption of these dietary components has been related to decreased risk of developing chronic diseases, including cardiovascular diseases , age-related eye diseases, type II diabetes, cancers, and all-cause mortality. Observational studies also have reported that the total dietary polyphenol intake was inversely associated with the risk of hypertension, hypercholesterolemia, and cardiovascular events. Polyphenols under different categories may play various roles in reducing CVD risk. In the United States, the estimated flavonoid intake is 345 mg/day, with flavanols as the most abundant source. The three most consumed flavanols are catechin, epicatechin, and their polymers. Subanalyses of a cohort study indicated that dietary intakes of flavanols along with lignans, dihydrochalcones, and hydroxybenzoic acids showed a stronger inverse association with the risk of overall CVD events than other phenolic compounds. Another cohort study reported that the dietary intakes of anthocyanins, dihydrochalcones, dihydroflavonols, proanthocyanidins, catechins, flavonols, hydroxybenzoic acids, and stilbenes were significantly associated with decreased risks of total CVD. Blueberries and cranberries contain high amount of anthocyanin and proanthocyanidin, respectively, with moderate concentration of flavonoids. Cocoa is rich in flavanols,especially epicatechin and catechin. Mango, as the fourth leading fruit crop worldwide, is high in carotenoids, phenolic acids, and mangiferin, a polyphenol classified as a xanthonoid. Carotenes exist in dietary sources primarily as α-carotene, β-carotene, and lycopene. Major xanthophylls that exist in dietary sources include lutein , zeaxanthin , and β-cryptoxanthin. Epidemiological studies report inconsistent results on the relationship between dietary L and Z intakes and the risk of age-related macular degeneration. However, clinical studies have shown that the supplementation of L and Z was able to increase the level of these compounds in the retina, suggesting their protection against age-related macular degeneration . A major dietary source of L and particularly of Z is goji berry, which also have other in carotenoids, as well as phenolic acids, and flavonoids. While many examples of fruits used traditionally for health promotion exist, this literature review focuses on the evidence of mango, cocoa, blueberries, and cranberries in cardiovascular health, and goji berries in eye health. The application of modern scientific methods to assess traditional remedies is important because evidence-based data is necessary to transfer historical stories and ancient wisdom to contemporary life and advancement of health and human performance.Cocoa is the dried and fully fermented product obtained from the seeds of Theobroma cacao L. and is the main ingredient in chocolate products. While used traditionally in a number of cultures, one of the best examples of its medicinal use is from the Kuna Indians who have lived for centuries on remote islands off of the Caribbean coast of Panama. This group of indigenouspeople is famous the lack of hypertension, an infrequent prevalence of CVD, diabetes, and cancer, and a longer lifespan, compared to Panamanians living on the mainland. However, when these people migrate to an urban environment, the incidence of hypertension and vascular diseases increased significantly. Nutritional assessments showed that the consumption of total fruit, fish, and cocoa-containing beverages were significantly higher among Kuna Indians living on the island compared to those residing in Panama City, even though the overall dietary intake of added sugars and salt was higher in the indigenous group.