Instead, a single insertion event is approved for commercialization and then must be transferred via standard back crossing to other varieties. This is highly inefficient and often makes it difficult to regain the unique properties of all the diverse varieties.The IR-4 program could also assist with chemical residue testing and with other aspects of meeting the regulatory requirements for release of transgenic horticulture.Leaves growing in sunny locations have comparatively high photosynthetic capacities, Rubisco activity, rates of electron transport, and rates of dark respiration . Some species are restricted to sunny or shady locations, and the leaves of these plants are often genetically adapted to their characteristic light environment. The leaves of other species, including those that are naturally exposed to particularly variable light environments, acclimate to local conditions . Acclimation to extended changes in light enhances net assimilation and nitrogen use efficiency while decreasing vulnerability to high light stress .The local light environment influences the morphological development of leaves in many species, resulting in comparatively thick leaves in bright locations . Fully expanded leaves have a limited capacity for morphological change , and acclimation by these leaves requires biochemical changes in carboxylation, electron transport, and light harvesting, as well as modifications to chloroplast structure and orientation . Monocotyledons with basal meristems, long leaves, and dense canopies may represent a case where photosynthetic acclimation by biochemical change is particularly advantageous. The grass Lolium multi-florum exhibits a strong capacity for local photosynthetic acclimation along the length of a leaf . The leaves of plants like Lolium are produced in dark or dim conditions at the base of plants, and, over time,dutch bucket hydroponic are pushed to the upper part of the canopy. Typha latifolia , at all monocot that forms dense and highly productive mono specific stands in wetlands , may provide an even more extreme example. T. latifolia ramets originate from rhizomes that are buried in sediment, submerged under water, and often shaded by a dense layer of litter and existing plants.
Initial leaf growth is supported by carbohydrates that are either mobilized from rhizomes or translocated from older leaves. Depending on sediment thickness and water depth, and the density of the litter layer and existing canopy, the lower 50–100 cm of a Typha leaf may experience almost total darkness . These characteristics make Typha a useful experimental system for investigating the acclimation capacity of morphologically mature leaves. Basal growth in Typha allows the separation of leaf age from light environment; the oldest segments of Typha leaves are exposed to the brightest light, as opposed to plants with apical meristems, where the youngest leaves are in bright conditions. We investigated the photosynthetic capacity of T. latifolia leaves over time following step changes in shading at different locations along leaves. We hypothesized that morphologically mature Typha leaves have a strong ability for local acclimation, and that individual leaf segments acclimate to the local light level autonomously from the rest of the leaf.Two-month-old sun and shade grown plants with several fully expanded leaves were placed on a bench under high light, and a pair of fully expanded leaves from each plant were selected for experimentation. Individual leaf segments between 20 and 45 cm from the tip were exposed to either sun or shade during the 15-day transfer experiment using cylinders of 80% neutral shade cloth, creating the full combination of segments exposed to constant low light , constant high light , low to high light , or high to low light . Additionally, a set of segments on the same leaves were exposed to either constant high light or low to high light . All treatment combinations and locations were replicated six times. The photosynthesis rate under bright light , stomatal conductance and dark respiration rate were measured every two or three days for two weeks in the middle of the sun and shade segments , on six replicate plants using a portable gas exchange system . Afull sun was measured at a PPFD of 2000 mol m−2 s−1 and Rd was measured in darkness after allowing 3–5 min for equilibration. Leaf temperature was controlled at 25 ◦C and reference CO2 concentration at 370 mol mol−1. The leaf to air vapor pressure deficit ranged from 0.6 to 1.5 kPa. Photosynthetic light response curves were measured after leaves had fully acclimated to a change in light .
A full sun was calculated as the photosynthetic rate at 2000 mol m−2 s−1; Amax was calculated by extrapolating the regression to infinite light; Rd was calculated as the y-intercept; the apparent quantum yield was calculated as the slope extrapolated to darkness. The light response curves were started at high light , and assimilation was measured in response to stepwise PPFD decreases until full darkness. Stomatal conductance decreased gradually in response to light decreases, and increased gradually in response to light increases. This sluggish stomatal response either led to lower rates of photosynthesis for light curves run from dim to bright conditions relative to curves run from bright to dim conditions, or forced unreasonably long equilibration times. Moreover, midday field and greenhouse observations showed that leaves exposed to a continuous PPFD of 2000 mol m−2 s−1 for ∼15 min exhibited a steady CO2 assimilation. We therefore opted to carry out light curves from bright to dark conditions, but acknowledge that lags in stomatal adjustment may have resulted in somewhat higher Ci for the light curves than would have been observed for fully equilibrated leaves. Nonetheless, we emphasize that our study is comparative, and the key is consistency across treatments; we executed the light curves the same way for all treatments and leaf segments. Nitrogen concentration , and leaf mass per area , were measured on the leaf segments used for gas exchange. Nitrogen was determined using the micro Kjeldahl technique; samples were oven dried, ground in a Wiley mill, weighed, digested, and nitrogen concentration was determined with an auto analyzer .We characterized the vertical gradients of light and photosynthetic characteristics during midday sunny conditions in August 2004. The PPFD profile was measured through the canopy at 48 different locations in the SJFM using a horizontal quantum sensor mounted on a 2 m handheld pole. Each profile consisted of ten individual measurements recorded with a datalogger at 0.0, 0.6, 1.2, and 3.0 m above the sediment surface. The 3.0 m measurement was above the canopy. LAI was measured at the base of the canopy with a LI-COR LAI-2000, assuming non-clumped leaves and without distinguishing between live leaves and litter. Photosynthetic light response curves were measured on three segments of fully expanded leaves from 5 different plants. The cross section of leaves changed from flat at the tip to triangular at the base, and it was not possible to seal the chamber on leaf segments further than 100 cm from the tip.The parameters derived from the light response curves, the nitrogen content, and the leaf mass per area,dutch buckets system were compared between treatments using Univariate ANOVA or t tests.
The effect of light treatment was analyzed by Student’s t-test. Univariate ANOVAs and Tukey tests were used to compare Afull sun, Amax, gs and Rd between the light treatments within each sampling period. The effects and interactions of treatment and time following transfer were analyzed with multivariate analysis of variance ; this analysis corrected F values due to temporal auto-correlation. MANOVA does not require the response variables to be equally correlated, assuming an unstructured variance–covariance matrix . The effect of leaf position on the photosynthetic parameters of leaves growing in natural conditions was analyzed with three paired t-tests, because of the high variation among leaves. Statistical analyses were performed with JMP software version 7.0 and Minitab statistical software version 15.Our results confirm previous reports that species from highly variable light environments have a strong capacity for photosynthetic acclimation. In the case of T. latifolia, light heterogeneity is created by the combination of a basal meristem and a dense canopy of live leaves and litter . Typha leaves are exposed to markedly different light environments as they grow and individual segments are pushed upward . The upper segments of leaves in the field, which occurred in a brighter environment, had higher rates of CO2 uptake . Previous field studies on T. latifolia have also reported large CO2 assimilation and gs gradients along leaves . We hypothesize that the patterns of leaf photosynthesis and conductance in Typha reflect four properties. Mature Typha leaf segments are morphologically preformed to function in high light and allow high rates of Afull sun, regardless of the current or growth environment. Mature Typha leaf segments contain sufficient amounts of nitrogen to support high rates of Afull sun, regardless of the current or growth environment. Mature Typha leaf segments rapidly reallocate nitrogen between active and inactive pools in response to local light availability; acclimation occurs at a local level and does not require nitrogen translocation into or out of a leaf segment. The controls on stomatal conductance remain constant over time; the patterns of conductance can be explained based on simple, short-term adjustments that act to maintain a nearly constant Ci concentration despite the changes in Afull sun and the physical environment. We interpret these patterns as a highly plastic strategy that maximizes carbon gain by a monocot growing in a vertically heterogeneous light environment. The construction of leaves that are morphologically capable of high rates of Afull sun is a simple consequence of the spatial decoupling of the growth environment from Fig. 5. Midday photosynthetic photon flux density at 0, 0.6, 1.2, and 3.0 m above the soil surface at the San Joaquin Freshwater Marsh . The lower three locations were within the canopy; the 3.0-m observation was above the canopy. Typha latifolia light response curves measured at the SJFM as a function of distance from the leaf tip . Each curve is the mean ± 1 standard deviation of 5 curves on different plants. The continuous line is the best-fit non-rectangular hyperbola. that experienced later in life. The strategy of investing in leaves that have a morphological capability for high rates of CO2 uptake appears advantageous given a situation where it is difficult to predict which leaves will ultimately experience high light conditions, and where fully expanded leaves are unable to morphologically adjust to a change in light. High rates of Afull sun come at the cost of high Rd. A leaf with a low Afull sun in a shady site has a more favorable carbon balance than a leaf with a high Afull sun in the same environment; the carbon savings associated with reduced Rd more than offset the loss of potential photosynthesis during occasional sunflecks. The rapid down regulation of Afull sun following transfer to shade would be expected to improve the C balance of leaf segments by decreasing Rd. The initial changes in Rd following light change were probably tied to the changes in leaf photosynthetic activity, and the energy requirements to process and export carbohydrates, as well as changes in protein turnover . Subsequent changes in Rd may have been associated with changes in the biosynthesis and/ordegradation of cellular components, such as Rubisco, cytochrome f, and chloroplast ATPase . The amount of nitrogen in leaf segments remained nearly constant over time, leading us to hypothesize a fraction of the nitrogen in shaded segments is stored in inactive pools and is rapidly activated following transfer to high light. These changes may include adjustments in partitioning among carboxylation, electron transport and light harvesting, chloroplast ultra structure, volume, and orientation . The high N content of shaded segments should not be viewed as wasteful. These nutrients can be reabsorbed and reallocated to the rhizome during senescence; a high reabsorption efficiency of P and N has been reported for Typha dominguensis . Moreover, this strategy allows a leaf segment to rapidly and autonomously respond to a change in light availability, without importing or exporting nitrogen to or from other leaf segments or organs.Plants are the primary producers on earth, assimilating carbon dioxide by daytime photosynthesis for the biogenesis of all essential structures. This carbon assimilate is partitioned primarily into sugars and starch in the autotrophic ‘sources’ with a portion of the sugars allocated to the heterotrophic ‘sinks’ to support growth of the latter.