The development of biogas technologies are mainly affected by technical key performance indicators

Solar and biomass technologies are reportedly the widest adopted renewable energy technologies in the country with potential yearly solar irradiation and large amount of biodegradable waste available from farming facilities. However, there is still a lot of efforts to be done to meet the national electricity targets access of 100 % by 2030. These efforts mainly depend on financial resources availability and electrification strategies to be put in place through public private partnerships like in most Sub-Saharan African countries. The PPPs in the energy sector usually address the energy deficit in two ways : by refurbishing existing energy infrastructures such as power plants, transmission, and distribution networks in connected urban and rural arears in SSA and, by investing in the development and installation of RETs in existing disconnected localities. As such, since most disconnected localities in Africa have a proven untapped agricultural potential, many private power developers are promoting the implementation of de-centralized mini-utilities, also called mini-grids. These minigrids are used as alternative cost-effective energy solutions using locally available resources, specifically solar and abundant biomass. From this perspective, this paper briefly presents and encourages the development of a pilot Biogas-Solar Photovoltaic Hybrid Mini-grid in the town of Palapye. In fact, BSPVHM addresses power shortage by using sunlight and bio-waste to generate eco-friendly energy at a lower installation and operating cost. Through an autonomous energy management system, the BSPVHM allows to generate electricity while managing the supply of power from various sources. Apart from electricity, the BSPVHM produces fertilizers from the remaining digestate after anaerobic digestion that occurs in the bio-digester. These fertilizers can be used after treatment to increase the production of crops through soil enhancement techniques,vertical grow rack allowing farmers to have greater harvest, become energy independent and boost the local economy.

The purpose of this pilot project is to serve as a road map for a waste management and electricity supply in African localities with the similar context like the city of Palapye. This is achieved through the review of the state of the art, the assessment of available solar and waste ressources in Palapye, the preliminary design of the configuration of the BSPVHM, and future recommendations based on the projected limitations of this pilot project.The use of traditional fossil fuel technologies is largely adopted in many African countries. These technologies allow them to quickly address the existing lack of power in their underserved areas. For this reason, various industries use diesel / heavy fuel oil gensets to meet their daily energy demand. However, diesel and HFO are not affordable for everyone and not ecofriendly. Apart from electricity, pollution is another source of sicknesses such as lung infections in rural arears. Studies show that most women suffer from lung infections due to the use of charcoal that are used for cooking. Africa reportedly releases more than 1.3 billion tons of CO2 on a yearly basis from various industries. To alleviate this pollution, a clean energy revolution in Africa is essential especially in SSA. In addition to environmental benefits offered, clean energy sources can unlock sustainable economic growth, improve human health, and empower women and children to live more productively. Mini-grid systems powered by RETs sources such as solar PV and biomass energy are adequate energy solutions for African disconnected areas with high agricultural potential. Even though solar PV and biomass are both RETs and biomass has a greater installed capacity in the world than solar PV, the latter is the most widely used form of energy generation source in the world nowadays. Solar PV is a mature technology that converts solar radiation energy into electricity by means of different equipment, principally solar modules, and power inverters. This kind of technology is currently amongst the most adopted energy sources due to its reliability and capacity to produce electricity at reasonably low cost despite its intermittencies. One of the main drivers considered to analyze the suitability of solar PV generation for a specific location is the solar irradiation level of that proposed site. SSA has one of highest irradiation levels in the world and is seen as the best place to develop and install such solar RETs.

The main limitations of solar PV are its inability to produce electricity in absence of solar radiation and the intermittency of its production, caused by weather disturbances. Solar energy is produced during the central hours of the day, which depends on the time that the sun raises and sets across the different periods of the year. The production of the solar plant is highly dependent on the altitude of the sun, weather disturbances during each season, the orientation towards the North, seasonal variations that affects the productibility. Biomass technologies include gasification, pyrolysis, AD, landfill, ethanol fermentation, photobiological process, dark fermentation, microbial fuel cell and microbial electrolysis cell . Biomass gasification is the most widely adopted waste-to-energy technologies technique for hybrid mini-grid set-up with solar PV. Generally, the gasifier is fed with wastes such as maize cobs and rice husks with a combustion process at 150°C to produce syngas that is filtered and converted to electricity by means of a multi-stage gasifier generator. In addition, bio-char which is a process by-product is used in the briquette making. These hybrid set-ups are largely found in Bangladesh, India and Uganda. The advantage of gasification is that it operates with a large diversity of wastes compared to AD that only works with organic waste with high moisture content and cellulose. The main disadvantage of this technique is that gasifier requires a lot of energy, release more carbon CO2 in the atmosphere and does not offer a competitive business model for agricultural communities like AD. AD produces biogas to generate electricity, heat, fuel and fertilizers from agricultural wastes and organic fraction of municipal solid wastes. Unlike solar PV that is intermittent, biogas power plant is base-load and can generate power at any time of the day depending on the feed stock intake in the digester. One of the challenges is that waste to energy technologies are more costly than solar PV in terms of installation and operations and Maintenance costs during asset lifespan.These KPIs are the design of the power plant, availability and quality of feed stocks, biomethane potential of substrates to be used, type of digestions that is selected, temperature conditions of the process , capacity factor of the biogas power plant, electricity conversion factor of the generator, viability of the tariff at which electricity will be sold and market profitability of by-products such as biofertilizer from AD digestate that accounts for 90% of the remaining digestate after power generation. These KPIs are the reasons as to why it is not as widely adopted as other RETs such as solar PV or onshore wind technologies . The current food regime has created a number of persistent environmental problems, such as climate change, environmental degradation and biodiversity loss, while it has also driven many farms to the verge of financial profitability.

Addressing these problems through a fundamental reorientation of the food system—a sustainability transition—calls for substantial changes taking place at the level of farm systems. However, farmers have been frequently described as being amongst the least powerful actors in food systems, acting mostly as price-takers, which makes them ill-equipped to act as transition agents . The contemporary food system is pushing farms towards more specialisation, intensification and growth to keep up with the cost-price squeeze , while the pressures for a fundamental reorientation in farming are mounting for the sake of environmental sustainability. The traditional approach to confronting sustainability problems as related to production practices and farm management has been advocated for decades through, for example, agri-environmental policies within the European Union. However, critics argue that many such strategies do not challenge the systemic features that contributed to the problems in the first place and are thus inadequate to address the root causes of sustainability problems. The consumption approach takes a different position, attributing the environmental crisis to consumption patterns, especially over-consumption of high-impact animal-based products . Under this approach, a dietary transition towards more plant-based consumption is the most critical solution to address the sustainability problems of the food system. However, the dietary transition translates as a threat to the livelihood of especially many peripheral regions where farms and farmers lack feasible production and employment alternatives due to unfavourable growing conditions and paucity of non-agricultural jobs . The problem with both production- and consumption-oriented perspectives is that they do not address questions of power and agency that are fundamental elements of the unsustainability of the contemporary food system . Accordingly, as Garnett states: “The concern lies not just with production, and not just with consumption: it is the outcome of unequal relationships between and amongst producers and consumers, across and within countries and communities.” Yet the questions of power, agency and social justice have received limited research interest in relation to initiatives promoting sustainability and climate change mitigation amongst food systems . To this end, an emerging area of ‘just transitions’ research has been gaining a stronger foothold amongst the sustainability transitions literature . In the context of food systems, research on just sustainability transitions draws from existing scholarship on food justice,vertical grow tables which is devoted to studying power and agency in food system, food system transformation, and distribution of harms and benefits of food system activities across various social groups and spatial scales .

Despite the urgency of efforts to promote sustainability transition within the food systems, and the observations related to farmers’ weak power position, there is very limited understanding about farmers’ capacities to transform . In this study, we examine the transformative capacities of farmers in a peripheral context to understand how they are positioned relative to the prospective sustainability transition. We operationalise farmers’ transformative capacities through the concept of resilience: by referring to resilience as persistence, adaptability, and transformability,we analyse the ‘fit’ of farms with the external system, characterised by rigidity and path-dependency on the one hand and mounting pressures for a disruptive transition on the other. The concept of resilience allows us to move beyond analysis of production lines or practices to be promoted or debilitated and analyse the position of farms as parts of the food system: whether and under which conditions peripheral farms can participate in the main function of food systems—food production. We discuss our findings in the context of just transition, which addresses social inequalities and tensions related to transition processes along the dimensions of distributive, procedural, recognitive, cosmopolitan and restorative justice . While the uneven consequences of transition processes are usually analysed in terms of distributive justice , we argue that the concept of restorative justice offers a theoretically unelaborated but promising pathway to understand the ways forward from the detected inequalities: how to compensate or restore the actors’ positions shaken by the transition processes . In particular, we elaborate on the recently developed proactive elements of restorative justice and argue that restoration should go beyond only reacting and compensating for harm created but also promoting the actors’ resilience in transition processes. Our empirical context is Finland, particularly its eastern, peripheral regions, where the livelihoods of many farmers and, partly, regional economies are dependent on cattle production. This is due to the region’s climatic conditions and soil properties being particularly suited for grass production, whereas crop cultivation suffers from profitability problems or from a short growing season . Furthermore, crop production does not offer possibilities for full-time employment in peripheral areas, which also lack the abundant job markets of economically prosperous regions . We base our findings on representative survey data retrieved from farmers in eastern Finland in 2018 . Social systems, such as food systems, may accommodate several stability domains. These stability domains are analogous with regimes as temporally stable configurations of a social-ecological or socio-technical system.We understand regimes as dynamically stable configurations of social systems prevailing over specific time frames. Sustainability transitions can thus be conceptualised as regime shifts or moves into new stability domains. These systemic transformations affect the subsystems residing within larger-scale systems, such as farms as parts of food systems.